Evaluation of Virtual Agents utilizing Theory of Mind
in a Real Time Action Game

Mark Hoogendoorn
VU University Amsterdam
Department of Artificial Intelligence
De Boelelaan 1081a
1081 HV Amsterdam, the Netherlands

mhoogen@cs.vu.nl

ABSTRACT

Within the domain of virtual agents, Theory of Mind reasoning is
considered an important attribute to enable such agents to act in
an intelligent fashion. Such ideas have been applied in various
domains, ranging from serious games to virtual storytelling.
Another interesting domain of application of agents attributed
with Theory of Mind is the entertainment gaming industry, which
poses a completely different goal upon the behavior of these
agents, namely to bring the players a fun experience. To this end,
this paper introduces an approach to develop Theory of Mind
agents for the entertainment gaming industry. Hereby, PRS is
used for the reasoning of the agent, which has been extended with
Theory of Mind reasoning capabilities. The behavior of the agent
has been evaluated against two other agents (a simple reactive
agent, and a memory-based agent) in an experiment that has been
conducted in which 15 participants had to play against all agent
types, and rate each one of them based upon certain criteria.

Categories and Subject Descriptors
1.2.11 [Computing Methodologies]: Distributed Artificial
Intelligence - Intelligent Agents.

General Terms

Design, Experimentation.

Keywords

Virtual Agents, Theory of Mind, Entertainment games.

1. INTRODUCTION

Within the development of virtual agents, a variety of authors
stress the importance for agents to have the ability to reason about
the state of mind of other agents, also referred to as the Theory of
Mind (see e.g. [1]). This enables these agents to act in a more

Cite as: Evaluation of Virtual Agents Utilizing Theory of Mind
in a Real Time Action Game, Mark Hoogendoorn and Jeremy Soumokil,
Proc. of 9th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2010), van der Hoek, Kaminka,
Lespérance, Luck and Sen (eds.), May, 10-14, 2010, Toronto, Canada,
pp. 59-66 Copyright © 2010, International Foundation for
Autonomous Agents and Multiagent Systems (www.ifaamas.org). All
rights reserved.

59

Jeremy Soumokil
VU University Amsterdam
Department of Artificial Intelligence
De Boelelaan 1081a
1081 HV Amsterdam, the Netherlands

wizzra@hotmail.com

believable and natural way. For example, Pynadath and Marcella
[11] have developed a social simulation tool in which Theory of
Mind is explicitly incorporated. Bosse, Memon and Treur [2]
introduce a BDI model which is able to reason about another
agent’s BDI model to enable social anticipation as well as social
manipulation.

Example applications in which agents attributed with Theory of
Mind are deployed include serious games (see e.g. [3]) and
virtual conversations (see e.g. [10]). Another interesting domain
of application is entertainment gaming, which has fundamentally
different goals than the serious gaming domain. Entertainment
games are not necessarily developed to learn something, but
instead are meant to give the player a fun experience. In
entertainment games, often so called non-player characters
(NPCs) are part of the game world, and contribute to the overall
fun factor. In the current state-of-the-art in the entertainment
gaming industry, intelligent behavior of NPC agents is typically
generated through often relatively simple finite state machines
[13]. Laird [6] claims that a crucial element missing in these
NPCs is the capability to anticipate and adapt to players. Overall,
one can say that there are potential gains to be made from the
ongoing developments in the field of virtual agents, in particular
those involving agents attributed with Theory of Mind to improve
the behavior of such NPC agents, and hence, allow them to
anticipate and adapt to the player’s behavior.

Whether new developments in virtual agents contribute to the
overall fun factors is not a trivial matter. Sweetser and Wyeth [15]
defined eight aspects that are considered as the responsible factors
which sum up to an interesting entertainment game: (1)
concentration, games require concentration, and the player should
be able to concentrate on the game; (2) challenge, the game needs
to be challenging, and match the player’s skill level; (3) player
skills, games should support the development of player’s skills;
(4) control, players feel a sense of control over their actions in the
game; (5) clear goals, the goals should be clear to the player at all
times; (6) feedback, players must receive appropriate feedback at
the right times; (7) immersion, players should be very much
involved in the game without having to put effort in it, and (8)
social interaction, the game should provide opportunities for
social interaction. The NPC agents within the game do not
contribute to all these aspects. Livingstone [7] shows that an NPC
agent’s intelligence affects immersion (if the characters are not

realistic, the player will not be involved in the game) and
challenge (non-intelligent NPC agents pose less of a challenge as
they are more easily deceived).

In this paper, the main research question is whether NPC agents
attributed with Theory of Mind can improve the gaming
experience of humans compared to more traditionally developed
NPC agents. For this purpose, a PRS engine (cf. [4]) was
implemented in a popular game development framework, namely
Unreal Engine 3. The architecture was extended with features to
allow explicit Theory of Mind reasoning using Default Logic (cf.
[12]). A game was developed to serve as a case study, as well as
three types of NPCs: a simple reactive agent, a memory based
agent, and an agent attributed with Theory of Mind. In order to
evaluate the player’s experiences with these NPC agents, an
experiment was conducted in which 15 participants took part,
thereby playing the game with each of the NPC agents in random
order, and filling in a questionnaire to evaluate each of them.

This paper is organized as follows: Section 2 presents the game
scenario used, whereas Section 3 addresses the design of the
various agent types. The experimental setup is described in
Section 4, and Section 5 presents the results of the experiment.
Finally, Section 6 is a discussion.

2. GAME SCENARIO

In order to develop and evaluate a Theory of Mind based NPC
agent for an entertainment game, the first step taken was
developing a simple game.

Player
NPC

Goal-item
| | NPC traversable

NPC non-traversable
| One-way pass way

Figure 1. Game World

The game scenario consists of a game world (see Figure 1) in
which the player has to collect four items. The items are depicted
by the crossed colored boxes, and are placed behind a wall
(indicated by the lines in the figure). The player is free to move
around in the game world and can use specific one-way passways.
These are only accessible through a door which only opens when
the item next to the door is still present. Passways are shown as
shaded areas in Figure 1. The player is opposed by one enemy, the

60

NPC, which roams around the game world. This NPC has the
ability to chase the player with its slightly higher velocity, and can
kill the player by touch. The NPC is not able to use the one-way
passes, which gives an advantage to the player. A screenshot of
the game is shown in Figure 2.

Figure 2. Screenshot of the game

3. AGENT DESIGN

This Section addresses the design of the NPC agent. In order to
make a comparison possible, three agent types have been created,
namely a simple reactive agent, an agent with a memory, and
finally a complete Theory of Mind agent. Before going into details
on the specific design of these agents, the general framework in
which the agents have been created is explained.

3.1 Agent Design Approach

For the expression of explicit Theory of Mind reasoning, a BDI
architecture is a suitable choice as this is based upon the same
mental notions as those used to express and reason about mental
models of others. Subsequently, PRS (for Procedural Reasoning
System, cf. [4]) was adopted for its roots in BDI foundations. A
conceptual overview of the PRS architecture integrated in the
game world is shown in Figure 3.

l
v
DATABASE | | KA LIBRARY
(BELIEFS) (PLANS)
obser-
vations | GAME WORLD
INTERPRETER | pRs WORLD
(REASONER) INTERFACE >
actions
GOALS INTENTION
STRUCTURE
I
NPC AGENT

Figure 3. PRS in the game world (PRS architecture from [4])

The figure shows that the NPC agent and the game world are
separate components that communicate with each other through
an interface (i.e. the world interface component). The world
interface component in turn, is connected to the PRS reasoning
structure. The choice for this modular architecture was made to

keep the reasoning of the agent independent of the precise
constructs in the game world.

The PRS part of the agent functions according to the specification
in [4] and its implementation is rooted in the formal dMars
specification (cf. [5]). The components within the structure can be
described as follows:

e The database component is essentially the current set of
beliefs the agent has. Beliefs are stored and referred to as
‘facts’ as these are true from the agent’s perspective.

e The goals component contains the goals the agent pursues.
These are expressed as conditions over some interval of time,
which allows a variety of goal types including achievement
goals, maintenance goals, and goals to test for certain
conditions.

e The Knowledge Area Library contains the plans the agent
has. Each of these plans consists of a body, describing the
steps of the procedure, and an invocation condition,
specifying under what conditions a plan is applicable.

e The Intention Structure encompasses all the tasks that have
been chosen to be executed (also referred to as intentions).
These can also include tasks that are executed at a later time
point. A single intention is a plan, possibly combined with
subplans that are expressed in the plan’s main body.
Intentions can also be dropped from the intention list, for
example due to particular changes that no longer require or
permit execution of such a plan.

e Lastly, the system interpreter is the glue between the
aforementioned components. At any particular time point, a
set of beliefs is present, as well as a set of goals. Given this
combination, certain plans are applicable (i.e. the invocation
condition is satisfied). At least one of these plans will then be
chosen to become an intention.

The plans are specified following the dMARS specification (cf.
[5]). Hereby, plans are specified by means of five elements:

e An invocation condition of the plan.

e The context of the plan, which specifies a situation formula
that must be believed by the agent for a plan to be
executable.

e The body of the plan includes a tree representing a flow-
graph of the steps in the plan. Within the plan body, three
possible constructs are used, namely (1) QUERY, which
allows one to query whether the agent currently holds a
certain belief; (2) EXECUTE, which specifies the execution
of an action, and (3) ASSERT which declares that a new fact
is to be added.

e A maintenance condition which is a condition that must be
true to continue execution of a plan.

e A set of internal actions that express what should be done in
case a plan succeeds or fails.

An example of a plan that can be adopted by an NPC agent is
shown in Figure 4, specified in the format that is interpreted and
fed into the PRS implementation that interacts with the game
world. The particular plan contains directives to kill an enemy.
The invocation condition signifies that a sub-goal to Kill $X must
present for the plan to be activated. Note that variables

61

(distinguished from values by the prefix ‘$’) stated in the
invocation condition and the context are automatically bound. In
this case, $X would be bound to “player”. This binding process
only occurs when the plan is invoked, and is not updated during
plan execution. Additional context expresses that the plan is only
valid when the player is nearby (Near $X). When these conditions
are met, the plan is executed. The first element of the plan body
consists of a query that checks whether or not the player is in
reach (IsinReach $X). The first element behind the QUERY line
indicates the next line that is to be processed in case the query is
positive, and the second element the line to jump to in case the
query result is negative. An omitted element indicates plan
termination. In case the player is in reach, line 2 specifies that the
player is killed. Thereafter, the plan jumps to the part specifying
the actions for success, which in this case involves the assertion of
the fact that $X is killed (Killed $X), and the fact that the sub goal is
no longer pursued. In case the player was not in reach, it is
checked whether the player is still visible, and in case he is not,
the plan ends unsuccessful. Otherwise, the player is chased,
followed by the check whether he is in reach again, etcetera.

@Engage Enemy X Plan name
SG_Kill $X X Invocation condition
Near $X X Context
= X Plan Body delimiter
[1] QUERY lIsinReach $X [2,10] ¥ Plan Body
[2] EXECUTE Kill $X [20]
[10] QUERY IsVisible $X [11,]
[11] EXECUTE Chase $X 1
. X Internal action for success
[20] ASSERT Killed $X [90]
[30] ASSERT SG_Search $X [90] X Internal action for failure
[90] ASSERT —SG_Kill $X

Figure 4. Example plan.

Based upon such plans, three agents have been designed. Below,
the specific plans for each of the agents are described in more
detail.

3.2 Simple Reactive Agent

The simple reflex NPC agent behavior that has been implemented
is straightforward: it follows a fixed pattern along all the locations
of the goal items, and in case the player comes in sight, it starts
chasing the player until it gets close enough to kill the player or
until the player has moved out of sight. The single plan for this
simple agent is shown in Figure 5. It expresses the following: if
the nearest room is Y, and the room which is planned after Y is Z,
then you first of all check whether the player is visible. If so, you
chase the player, and check whether he is in reach. If he is not in
reach, you check again whether he is visible, etc. Eventually, the
player is either in reach, and killed (resulting in a successful
completion of the plan), or no longer visible. If the latter is the
case, the nearest room is patrolled, and in case the player is visible
in the room, the aforementioned sequence of actions is performed
again. In case the player is still not visible, the NPC agent moves
to the next room (Z) and the plan to kill the player has failed (in

this case indicated by the empty space before the comma in the
part between the square brackets).

@Simple Reactive Agent

SG_KillEnemy $X
NearestRoom $Y
NextRoom $Y $Z
=

[1] QUERY lIsVisible $X [10,20]
[10] EXECUTE Chase $X [11]
[11] QUERY IsInReach $X [12,1]
[12] EXECUTE Kill $X [50]

[20] EXECUTE PatrolLocation $Y [21]
[21] QUERY IsVisible $X [10, 22]
[22] EXECUTE MoveToward $Z [23]
[23] QUERY ArrivedAt $Z [,1]

[50] ASSERT —SG_KillEnemy $X

Figure 5. Simple reflex agent plan

3.3 Memory-Based Agent

The second agent type is the memory-based agent. This agent has
a memory expressing whether certain goal items are still present at
the locations. Briefly, the agent has the following characteristics:

e The agent only patrols rooms that still have goal items.

e [fthe NPC agent sees the player, the player is chased. If the
NPC agent loses sight of the player, it returns to the last
known location of the player.

Again, PRS plans were generated that perform precisely this
behavior. The first plan in Figure 6 was created to chase a visible
enemy (i.e. the last element in the bullet list above). It can be seen
that the plan fires based upon the context that the enemy X is
visible. First, a query is performed to see whether the enemy is
still visible (as the context is only verified upon plan invocation
and not updated afterwards). If the player is visible, the player is
chased. In the case that the player is in reach, the NPC kills the
enemy, and the plan terminates successfully. If the player is no
longer visible, the location at which the player was last seen is
selected to go to. In case the player is also not visible there, the
NPC agent moves towards the direction at which the player is
most likely at. If the player is still not visible, the plan terminates.
In the situation that the player has been along the locations past,
the chasing is started again.

The second plan in Figure 6 expresses a PRS plan which concerns
the movement along the goal items. Hereby, for the sake of the
simplicity of the plan, it has been decided to add an elementary
action to patrol the non-empty room, which terminates in case the
player becomes visible again.

@Memory-Based Agent plan for chasing

SG_KillEnemy $X

IsVisible $X

=>

[1] QUERY IsVisible $X [10,20]
[10] EXECUTE Chase $X [11]
[11] QUERY IsInReach $X [12,1]
[12] EXECUTE Kill $X [30]
[20] EXECUTE MoveToLastLocation $X [21]

62

[21] QUERY IsVisible $X [10, 22]
[22] EXECUTE MoveTowardDirection $X [23]
[23] QUERY IsVisible $X [10,30]

[30] ASSERT —SG_KillEnemy $X

@Memory-Based Agent plan for passing the locations
SG_KillEnemy $X

—lIsVisible $X

=>

[1] EXECUTE PatrolNonEmptyRooms [2]

[2] QUERY IsVisible $X [1]

Figure 6. PRS plans for the memory-based NPC agent

3.4 Theory of Mind Agent

The last NPC agent uses a Theory of Mind approach and
explicitly uses a BDI model it has of the player. To describe the
development process, the required extension of the described PRS
architecture is explained. Thereafter, the BDI model of the player
is addressed.

S 1 BDI model Acti Observations
tep (in default ctlon'(sj to that can be
theory) avol manipulated
Select

Step 2 minimal set of

manipulations

DATABASE

Step 3 (beliefs)

Figure 7. Theory of mind coupled to PRS

Theory of Mind combined with PRS. PRS combined with a
Theory of Mind approach allows the NPC agent to reason about
the BDI model of the player and manipulate the player (i.e. the
player’s observations) in such a manner that the player no longer
performs actions that ultimately lead to winning the game. This is
realized by developing specific plans that manipulate the
occurrence of certain observations of the player. Reasoning about
the BDI model to derive which observations the player should
have to avoid him from performing useful actions is done through
a Default Logic approach (cf. [12]). The approach consists of
three steps, which are described below. The steps are briefly
summarized in Figure 7.

The first step in the process is that the BDI model (as specified by
means of states and state transitions in Figure 8) is translated into
a default theory which is defined as pair (D, W). W is a finite set
of logical formulae, called the background theory, that formalize
the facts that are known certain. D is a set of default rules. A
default rule has the form: a: By, .., B, / v. Here, o is the
precondition, which must be satisfied in order to derive
conclusion vy. The Ps, called the justifications, have to be
consistent with the derived information and W. As a result y
might be derived and more default rules can be applied. However,
the end result (when no more default rules can be applied) still has
to be consistent with the justifications of all applied default rules.
For more details on Default Logic, such as the notion of

belief(game_start)

observatiorﬁgame_start)
J

observation|(enemy_approaching)

C

G/

»O

belief(enemy_approaching)

O

intention(discover_enem

observation|(enemy_at_item(X)) belief(enemy_at_iteg
O >
observation|(near_corner(x)) belief(near_corner(x))
(\ >
D; >
observation|(near_door(x)) belief (near_door(x))
A\ >
O >

observation|(near_item(X)) belief (near_item(X

desire(aware_of_enemy)

action [(peek(x))

desire(remain_alive)

‘ intention(escape) action|(move_to(x))
O ——t 30

A . . .
O intention(obtain_item(x))

action|(take_item(x))

>
TN

»

(=

—O

C)/desire(collect_item(x))

Figure 8. BDI model used for Theory of Mind

extension, see, e.g., [12, 8]. In order to translate the BDI model
into the Default Theory, the connections in the model are
translated into rules that constitute the background theory. The
observations are translated into default rules, expressing that an
observation can be assumed in case no explicit information is
known, i.e. :y/ .

In the second step, the NPC uses the default model for reasoning.
In order to do so, it is first of all assumed that the NPC agent
knows what observations can be manipulated, denoted by the set
Oman = {04, ..., on}. Furthermore, it also has knowledge about what
actions should be avoided: A, = {a1,, an}. USing Opan, the NPC
agent creates extensions of the default theory above, by first
adding single observation elements to the background theory, i.e.
W U o . Note that also the negation of the observation is added.
Thereafter, it calculates the stable sets that follow from this
addition (using SModels, cf. ([9]), S ={SH1, Sn}. In case it holds
that none of these sets contain an action that should be avoided
(i.e. =3Si€ S, ai € Aawid [ai € Si]), then o is sufficient to avoid the
player from succeeding. This is then passed on to step 3.
Otherwise, combinations of two observations (W wo, U o) are
added, etcetera.

The third and final step is to add the observations that should be
manipulated to the PRS database, resulting in only those plans
being activated that indeed eventually result in the manipulation
of these observations, and hence, the avoidance of the actions.

BDI model of the player. The BDI model used for the Theory of
Mind agent is shown in Figure 8. In the figure, the circles
represent the states, whereas the arrows connecting the states
represent causal relations. A minus at the beginning of an arrow
denotes an inverse relationship between two states (e.g. belief b
does not hold, so action a is performed). Furthermore, an arc that
connects two arrows expresses a conjunction. It can be seen that
there are quite some observations that can be performed:

e The game has just started
e An enemy is approaching
e Anenemy is present at goal item X

e [am near corner X

e [am near door X
e [amnear goal item X

Based upon these observations, similar beliefs are formed.
Furthermore, desires are present. In this case, three main desires
are present, namely (1) to be aware of where the enemy is; (2) to
remain alive, and (3) to collect all goal items. The second desire is
most dominant as the player can no longer get goal items once
he/she is dead. Initially, the belief that the game has just started,
and the desire that the player wants to be aware of the enemy
leads to the intention to discover the enemy. This intention
becomes an action to peek at a location X once the player has a
belief that the enemy is at location X (which is caused by an
observation). A second intention within the model is to escape in
case the enemy comes too close. This is caused by the desire to
remain alive and the belief that an enemy is approaching. As a
result of this intention, the player will either move around a
corner, or move to a door that is near (both cannot occur at the
same time). Finally, an intention to obtain a goal item X is shown
in the model as well, caused by a desire to collect all such items
and a negation of the belief that the enemy is approaching. In case
the player is not near an item, the player moves towards the item
in order to take it.

Utilizing the BDI model of the player. The model specified in
Figure 8 has been translated into Default Logic as described
above. In this case, merely two observations can be influenced,
and hence, be manipulated by the NPC agent, namely
enemy_approaching, and enemy_at_item(x). The result of running the
three step algorithm introduced above (which is peformed each
time a new BDI model of the player is loaded) is that by making
sure that the NPC agent is always approaching (i.e. in sight of the
player), the player never takes the goal items, and hence, never
wins.As a result, this fact is added to the PRS system. Three
suitable plans are present as expressed in Figure 9. The first one
specifies a plan for the beginning of the game for the NPC agent.
Hereby, it can be the case that the NPC agent is either already
observing the player, resulting in the subgoal to kill the player
being asserted, or otherwise to move to a watchpoint waiting
untill the player becomes visible. The second plan expresses that
the NPC agent will patrol the backdoor exit of a location where
the player is at in case the goal items associated with the door is

63

still present. Finally, the third plan specifies that the NPC agent
tries to avoid a player from escaping when he is trapped. This
occurs when the player has just collected a goal item, and is
unable to use the backdoor. The NPC agent will then patrol the
entry location (such that the player cannot escape), and will start
to chase the player in case the player is visible. More plans exist
for the Theory of Mind NPC agent, but these have been left out
for the sake of brevity.

@ Plan for going to nearest watch point to become visible in the

beginning of the game

StartGame
establish(enemy_approaching) $X
WatchPoint $Y

=>

[20] ASSERT SG_KillEnemy $X

SG_FindPlayer $X
GoalltemLocation $Y
IsExitDoorLocationOfltem $Z $Y
IsNear $X $Y
establish(enemy_approaching) $X

=>

[21] ASSERT ~SG_FindPlayer $X

SG_FindPlayer $X
GoalltemLocation $Y
IsEntryLocationOfltem $Z $Y
IsNear $X $Y
establish(enemy_approaching) $X
=>

[31] ASSERT ~SG_FindPlayer $X

/I Only one instance exists

[1] QUERY IsVisible $X [20.2]
[10] EXECUTE MoveToward $Y (1]
[12] QUERY ArrivedAt $Y [13,1]
[13] EXECUTE StandGuard [14]
[14] QUERY IsVisible $X [20]

@ Plan for going to the goal item that the player is going for

[1] QUERY IsVisible $X [20,2]
[2] EXECUTE MoveToward $Z [10]
[10] EXECUTE PatrolLocation $Z [11]
[11] QUERY IsVisible $X [20,]
[20] ASSERT SG_KillEnemy $X [21]

@ Plan to not let player escape when he's trapped

[1] QUERY IsVisible $X [30,2]
[2] QUERY GoalltemAt $Y [, 10]
[10] EXECUTE MoveToward $Z [11]
[11] EXECUTE PatrolLocation $Y [12]
[12] QUERY IsVisible $X [13,]
[13] EXECUTE Chase $X [14]
[14] QUERY IsInReach $X [20,10]
[20] EXECUTE Kill $X [31]
[30] ASSERT SG_KillEnemy $X [31]

Figure 9. PRS plan of Theory of Mind agent

4. EXPERIMENTAL SETUP

In order to evaluate the developed agents and investigate the
added value of a Theory of Mind attributed agent, an experiment
was conducted. The setup of this experiment is described in this

64

section. A group of participants was asked to play the game with
each of the different NPC agents types (simple reflex, memory-
based, and Theory of Mind). The order in which the participants
played against the various agent types was randomized to avoid an
order effect. Initially, the participants were given a brief
explanation of the game. Thereafter, they played one condition
(either against the simple reflex, the memory-based, of the Theory
of Mind agent), after which they had to fill in a questionnaire.
This process was repeated until the participant rated all the
different NPC agent types. Of course, the key of the experiment is
what questions to ask. In total, twelve statements were defined.
These were inspired by the two aspects considered important in
entertainment games that are influenced by the NPC agents,
namely immersion and challenge (see the introduction for more
details). The participants had to rate on a seven point scale:
entirely disagree, disagree, slightly disagree, neutral, slightly
agree, agree, and entirely agree. The statements are expressed
below.

First a number of questions were posed concerning the experience
with the game itself, without specifically addressing the NPC
agent which acted as an opponent (which might of course still
have an influence on the rating of the statement):

1. The game was fun to play
2. The goal of the game was hard to accomplish
3. My own strategy in the game was flawless

Besides this, a number of questions were posed about the NPC
agent and its behavior:

My opponent behaved pro-actively

My opponent anticipated on my actions

My opponent behaved human-like

I was able to figure out my opponent’s course of action
I was forced to change my tactics

My opponent reacted slow

My opponent cheated

- A

—_ O

My opponent was easily deceived

_
N

My opponent executed his actions well.

5. RESULTS

In total, 15 participants took part in the experiment, 14 males, and
1 female. All were experienced gamers, with an age between 20
and 32. The average ratings of the participants are presented in
Table 1 (where 1 equals the least agreement with the statement,
and 7 the most, with the exception of “#lives lost”, in which the
number represents the number of lives). The standard deviation is
shown between brackets. It can be seen that the Theory of Mind
NPC agent scores relatively good (from an immersion and
challenge perspective) on the statement about the goal being
difficult to achieve (statement 2), the fact that the players were
forced to change tactics (statement 8), and the fact that the
opponent is not easily deceivable (statement 11). This also shows
in the number of lives lost by the players during the game.
Furthermore, the simple reflex agent performs a lot worse
compared to the memory-based and the Theory of Mind agent on
most statements.

Table 1. Average ratings and standard deviation

Statement Simple Memory- | Theory of
reflex based Mind

1. Fun to play 4.80(1.15) | 4.93(1.16) | 5.00(1.36)

2. Goal hard 3.07(1.62) | 3.93(1.83) | 5.07(1.83)

3. Flawless strategy 4.27(1.75) 3.47(1.68) 3.40(1.72)

4. pro-active opponent 4.33(1.59) 5.60(1.40) 4.27(1.53)

5. anticipating opponent | 3.27(1.58) 4.87(1.51) 5.00(1.65)

6. human-like opponent 4.07(1.53) 4.93(1.03) 5.20(1.21)

7. Figure out opponent 4.47(1.51) 4.93(1.28) 5.07(1.53)

course of action

8. Forced to change 4.40(1.68) 4.27(1.75) 5.40(1.40)

tactics

9. Slow response 2.73(1.22) 3.20(1.66) 2.40(0.74)

opponent

10. Cheating opponent 2.80(1.32) 2.87(1.60) 2.80(1.70)

11. Easily deceivable 420(1.61) | 4.13(1.68) | 3.53(1.41)

opponent

12. Opponent executed 4.67(1.23) 5.47(1.41) 5.73(0.96)

actions well

lives lost 5.60(1.30) | 6.27(1.53) | 7.67(2.74)

In order to assess how significant these results are, an ANOVA
has been performed of which the results are shown below. In the
Table, three columns are shown presenting the results, namely
P(SR, MB) indicating what the P-value is of the difference in
responses between the simple reflex and the memory-based, P(SR,
TOM) for the P-value between the simple reflex and the Theory of
Mind NPC agent, and P(MB, TOM) the P-value between the
answers given for the memory-based and the Theory of Mind
agent. Note that the results that are significant (with P < 0.05) are
highlighted by a bold font.

Table 2. Statistical results

Statement P(SR, MB) | P(SR, TOM) | P(MB, TOM)
1. Fun to play 0.7542 0.6669 0.8864
2. Goal hard 0.1811 0.0037 0.1011
3. Flawless strategy | 0.2128 0.1828 0.9155
4. pro-active 0.0282 0.9078 0.0193
opponent

5. anticipating 0.0083 0.0065 0.8187
opponent

6. human-like 0.0802 0.0326 0.5209
opponent

7. Figure out 0.3682 0.2888 0.7979
opponent course of

action

8. Forced to change | 0.8331 0.0880 0.0606
tactics

9. Slow response 0.3874 0.3736 0.0985
opponent

10. Cheating 0.9017 1.0000 0.9126
opponent

11. Easily deceivablel 0.9126 0.2378 0.2988

65

opponent

12. Opponent 0.1091 0.0134 0.5494
executed actions

well

lives lost 0.2094 0.0135 0.0955

The results indicate that the participants experienced that the goal
of the game was much harder to achieve against the Theory of
Mind NPC agent, compared to the simple reflex NPC agent. This
significant difference is not the case with the simple reflex and the
memory-based NPC agent. Furthermore, the participants consider
both the memory-based agent as well as the Theory of Mind agent
more anticipating than the simple reflex agent. Also, the rating of
the statement about whether the opponent actions are executed
well is significantly better compared to the simple reflex agent,
whereas the difference between the simple reflex and the memory-
based agent is not. For the number of lives lost the same holds.
One strange element is the fact that the memory-based agent is
rated more pro-active than the Theory of Mind agent. This has to
do with the fact that the users consider the initial behavior of the
agent (waiting at the waypoint to spot the player) not pro-active
according to their definition of pro-activeness whereas patrolling
the non-empty rooms is (which the memory-based agent did).
Positive non-significant results are the fact that they still consider
the NPC agent fast (statement 9), and the fact that they thought
the opponent was never cheating (statement 10).

6. DISCUSSION

In this paper, one of the key elements from the domain of virtual
agents, namely the ability to reason using a Theory of Mind, has
been applied within the domain of entertainment gaming. The
entertainment gaming domain is an interesting application area
due to the fact that the current state-of-the-art in the domain can
profit significantly from the developments in the virtual agents
research field. In addition, also for the research in virtual agents,
the fact that the entertainment gaming domain places different
constraints on the eventual behavior of the agent compared to
other domains makes it interesting: the players are “simply” to be
entertained. In order to evaluate the usefulness of Theory of Mind
in this domain, an agent with such abilities has been designed.
The design of the agent was evolved around PRS (cf. [4]). To
allow the agent to reason explicitly about mental models of others,
and select plans accordingly, the PRS agent has been extended
with appropriate reasoning capabilities, in this case in the form of
Default Reasoning (cf. [12]) using the mental model of the player.
Using this reasoning the agent is able to identify how it should
manipulate the world of the player to avoid the player from
reaching its goals, and select plans accordingly.

To evaluate how suitable the designed agent is, a game has been
used as a case study. Hereby, two additional agents have been
designed to allow for a comparison, namely a simple reactive
agent, and a memory-based agent. 15 participants played the
game, and were asked to rate the various agents they played
against. Based on the results, on several terrains the Theory of
Mind NPC agent turned out to perform significantly better
compared to the simple reactive NPC agent. However, some
expected results did not turn out to be significant (such as the pro-
activeness of the agent, the deceivability, and the fact that players
were forced to change tactics). Of course, these results depend

highly on the chosen group (all game programmers with certain
specific ideas about intelligent behavior). Furthermore, the game
itself was relatively simple which might not completely show the
advanced Theory of Mind behavior of the agent. For future work,
a larger experiment is planned as well.

Of course, more work exists related to the application of Virtual
Agents in game environments. In [6] a Quakebot is proposed
which has been designed using Soar, and is able to anticipate to
opponents. However in the anticipation, the bot does not use an
explicit model about the opponent, but assumes the opponent has
the same model as the bot itself. In the approach proposed in this
paper, any opponent model can be inserted. Furthermore, in this
paper the Theory of Mind model is also used to select plans to
avoid the opponent from reaching a certain goal, which is not the
case for the Quakebot. Related to serious gaming, [16] describes a
virtual reality training based system for which Virtual Agents
have been developed. Due to the nature of the domain of
application, the criteria of the agents developed are however
completely different from the ones addressed in this paper (i.e. the
ability to learn something versus “the fun factor”). Other agent
architectures for the development of Theory of Mind agents exist
as well. In [11] for instance, an architecture is proposed for a
social simulation tool called PsychSim which explicitly
incorporates the notion of Theory of Mind. Due to the long
tradition of PRS and its clear specification within the dMARS
architecture, the choice has been made to use that architecture.
The evaluation presented is however independent of the precise
architecture used. Furthermore, as opposed to PsychSim, in the
architecture presented in this paper, a Default Reasoning approach
is utilized. In [2] specific reasoning rules are proposed to utilize a
BDI model of other agents, and hence, reason using a Theory of
Mind. Also in [14] such reasoning rules are identified. In this
paper, Default Reasoning has been used as a reasoning
mechanism. This makes it possible to derive all stable sets given
that the information about the observations is not complete, and
not everything can be manipulated, making the reasoning
approach more generic than the specific reasoning rules as
proposed in the aforementioned work. Similar work has been
done in the user modeling community, in which Default
Reasoning is utilized to discover the beliefs of a user (see e.g.
[17]). The domain however differs from the application domain
presented in this paper.

7. ACKNOWLEDGMENTS

The authors would like to thank the game studio W!Games for
providing the necessary assets for creation of and participation in
the use case scenario, and more in particular, Michiel Walstra,
Ben Meijering and Mike van der Voort for their involvement in
making this project a success. Furthermore, the authors wish to
thank the anonymous reviewers for their useful comments that
helped to improve the paper.

8. REFERENCES
[1] Baron-Cohen, S. (1995), Mindblindness, MIT Press.

[2] Bosse, T., Memon, Z.A., and Treur, J. (2007), A Two-level
BDI-Agent Model for Theory of Mind and its Use in Social
Manipulation. In: P. Olivier, C. Kray (eds.), Proceedings of
the Artificial and Ambient Intelligence Conference, AISB'07,
Mindful Environments Track. AISB Publ., pp. 335-342.

66

[3] Harbers, M., Bosch, K. v.d., and Meyer, J.J. (2009),
Modeling Agent with a Theory of Mind. In: Baeza-Yates, R.,
Lang, J., Mitra, S., Parsons, S., and Pasi, G., (eds.),
Proceedings of the 2009 IEEE/WIC/ACM International Joint
Conference on Web Intelligence and Agent Technology,

IEEE Computer Society Press, pp. 217 —224.

Ingrand, F. F., Georgeff, M. P., and Rao, A. S. (1992). An
architecture for Real-Time Reasoning and System Control.
IEEE Expert: Intelligent Systems and Their Applications,
vol. 7 (6), pp. 34-44.

d'Inverno, M., Luck, M., Georgeff, M., Kinny, D., &
Wooldridge, M. (2004). The dMARS Architecture: A
Specification of the Distributed Multi-Agent Reasoning
System. JAAMAS 9 (1-2), pp. 5-53.

Laird, J. (2001), It Knows What You’re Going To Do:
Adding Anticipation to a Quakebot. In: Andre, E., Sen, S.,
Frasson, C, Muller, J.P. (eds.), Proceedings of the 5t
International Joint Conference on Autonomous Agents,
ACM Press, pp. 385-392.

Livingstone, D. (2006). Turing's Test and Believable Al in
Games. ACM Computers in Entertainment, vol. 4, pp. 1-13.

Marek, V.W., and Truszczynski, M. (1993), Nonmonotonic
Logics, Springer Verlag.

Niemeld, I, and Simons, P. (1997) SModels - an
implementation of the stable model and well-founded
semantics for normal logic programs. In: Dix, J., Furbach,
U., and Nerode, A. (eds.), Proc. LPNMR’97, LNAIL vol.
1265, Springer Verlag, pp. 420-429.

[10] Peters, C. (2005), Foundations of an Agent Theory of Mind
Model for Conversation Initiation in Virtual Environments.
In: Heylen, D. and Marcella, S. (eds.), Proceedings of the
AISB '05 symposium on Virtual Social Agents: Mind-
Minding Agents. Hatfield, England.

[11] Pynadath, D.V., and Marsella, S.C. (2005), PsychSim:
Modeling Theory of Mind with Decision Theoretic Agents.
In: Kaelbling, L.P., and Saffiotti, A., Proceedings of 1JCAI
2005, Professional Book Center, pp. 1181-1186.

[12] Reiter, R. (1980) A logic for default reasoning. Artificial
Intelligence, 13:81-132.

[13] Schwab, B. (2004). Al game engine programming. Rockland,
ME, USA: Charles River Media, Inc.

[14] Sindlar, M.P., Dastani, M.M., and Meyer, J.J. (2009), BDI-
Based Development of Virtual Characters with a Theory of
Mind. In: Ruttkay, Z., Kipp, M., Nijholt, A., and
Vilhjalmsson, H.H. (eds.), Proceedings of IVA 2009, LNAI
5773, Springer Verlag, pp. 34-41.

[15] Sweetser, P., and Wyeth, P. (2005), Gameflow: A Model for
Evaluating Player Enjoyment in Games, ACM Computers in
Entertainment, Vol. 3, pp. 1-24.

[16] Swartout, W., Gratch, J., Hill, R., Hovy, E, Marsella, S.,
Rickel, J., and Traum, D. (2006), Toward Virtual Humans,
Al Magazine, vol. 27, pp. 96-108.

[17] Van Arragon, P., Modeling default reasoning using defaults.
User Modeling and User-Adapted Interaction, vol. 1, pp259-
288.

[5]

[7]

[9]

